This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 23 February 2013, At: 07:55

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl16

Estimation of Nematic-Isotropic Points of Nematic Liquid Crystals

Lawrence E. Knaak ^a , Herbert M. Rosenberg ^a & M. Paul Servé ^b

^a Air Force Materials Laboratory Writh-Patterson Air Force Base, Ohio, 45433

^b Department of Chemistry, Wright State University Dayton, 45431

Version of record first published: 28 Mar 2007.

To cite this article: Lawrence E. Knaak , Herbert M. Rosenberg & M. Paul Servé (1972): Estimation of Nematic-Isotropic Points of Nematic Liquid Crystals, Molecular Crystals and Liquid Crystals, 17:2, 171-185

To link to this article: http://dx.doi.org/10.1080/15421407208083839

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be

independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Molecular Crystals and Liquid Crystals. 1972. Vol. 17, pp. 171–185 Copyright © 1972 Gordon and Breach Science Publishers Printed in Great Britain

Estimation of Nematic-Isotropic Points of Nematic Liquid Crystals (1)

LAWRENCE E. KNAAK and HERBERT M. ROSENBERG Air Force Materials Laboratory Wright-Patterson Air Force Base, Ohio 45433

and

M. PAUL SERVÉ
Department of Chemistry
Wright State University
Dayton, Ohio 45431

Received August 2, 1971 in revised form October 7, 1971

Abstract—A survey has been made of reported nematic-isotropic points of nematic liquid crystals having the following structure:

$$X \left(\begin{array}{c} \\ \end{array} \right) Y \left(\begin{array}{c} \\ \end{array} \right) Z$$

where X and Z are: R—, RO—, RCO₂—, RCO₂—, RCO—, ROCO—; R is n-alkyl varying from C_1 to C_6 ; and Y is:

The variation of the nematic-isotropic points with structure is sufficiently regular to permit the generation of sets of parameters for X, Y and Z that can be used to make reasonable predictions of the nematic-isotropic points for all combinations of X, Y and Z.

1. Introduction

The discovery that thin films of certain nematic liquid crystals scatter light under the influence of an electrical field (2) has stimulated considerable interest in these compounds because of their potential value in display technology. The classes of nematic compounds which are currently favored are p,p'-disubstituted diphenyl compounds (I) where Y is usually

$$X \bigcirc Y \bigcirc Z$$
 (I)

azomethine, azoxy or ester linkage.

In addition to other device-related properties, the mesomorphic temperature range is an important parameter and considerable effort is being employed to expand this temperature range to cover anticipated operating requirements. Since the crystal-nematic transition (CN) for nearly all known nematic compounds is above room temperature, lowering of this transition temperature is generally achieved by means of binary or tenary eutectic mixtures of nematic compounds. The nematic-isotropic (NI) liquid transition of nematic mixtures is approximately a linear function of composition.

In order to minimize our synthesis requirements we examined reported transition temperatures in a search for structural cor-We found no useful method for predicting melting points. A literature survey of nematic transition points was more encourag-Plots of the nematic-isotropic point as a function of substituent chain length give parallel curves for certain analogous nematic compounds. Weygand and Gabler (3) reported this behavior for homologous series of 4,4'-dialkoxyazoxybenzenes, azobenzenes and Similar results were reported for substituted benzylideneanilines. nitrones and anils. (4) These observations suggested the possibility of generating sets of parameters of X, Y and Z that could be used for estimating nematic-isotropic points. The incremental effect of certain substituents on the thermal stability of dianils has previously been noted. (5)

We have restricted X and Z to alkyl, alkoxy, acyloxy, alkyl-carbonato, cyano and acyl functionalities of no greater than six carbon atoms in the terminus. The central linkage, Y, was confined to azo, azoxy, azomethine, nitrone and ester linkages. A total of 137 compounds were used to assign a numerical value to each substituent such that the sum of appropriate substituent values for each compound equaled or approximated the nematic-isotropic point temperature.

2. Procedure

Due to the symmetry of the azo linkage, those nematic compounds containing this linkage were used as a point of departure for the determination of parameters for all the X, Y and Z's. The azo linkage was arbitrarily assigned a value of zero. From the

Table 1 Derivation of Substituent Parameters Based on Nematic-Isotropic Points of Azo Compounds

$$X \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle N = N \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle Z$$

					\/			
Ref	X	Z	CN	CI	NI	NI-55	NI-75	NI÷2
a	CH ₃ O	CH ₃		110	38	- 17		
a	CH_3O	C_2H_5		80	28	-27		
\boldsymbol{a}	CH_3O	C_3H_7	59		69	14		
\boldsymbol{b}	CH_3O	C_4H_9	32		48	-7		
a	CH_3O	C_5H_{11}	38		66	11		
a	CH_3O	C ₆ H ₁₃	39		53	-2		
c	CH_3O	OC_2H_5		134	131	76		
\boldsymbol{c}	CH_3O	OC_3H_7		113	110	55		
c	CH_3O	OCOCH ₃	119		122	67		
\boldsymbol{c}	CH ₃ O	OCOC ₂ H ₅	91		117	62		
c	CH_3O	OCOC ₃ H,	75		117	62		
\boldsymbol{c}	CH_3O	$OCOC_4H_9$	80		102	57		
\boldsymbol{c}	CH_3O	$OCOC_5H_{11}$	66		106	51		
\boldsymbol{c}	CH_3O	OCOC ₆ H ₁₃	71		98	43		
\boldsymbol{c}	CH_3O	$OCOC_6H_5$	162		184	129		
\boldsymbol{c}	CH_3O	$OCO_2C_2H_5$	90		114	59		
\boldsymbol{a}	CH ₃ O	$\mathrm{OCO_2C_6H_{13}}$	69		84	29		
\boldsymbol{c}	CH ₃ O	$CO_2C_6H_5$	149		177	122		
\boldsymbol{a}	C_2H_5O	C_3H_7	88		100		25	
\boldsymbol{b}	C_2H_5O	C_4H_9	48		81		6	
c	C_2H_5O	OC_3H_7		144	140		65	
c	C_2H_5O	OCOCH ₃	120		136		61	
c	C ₂ H ₅ O	OCOC ₂ H ₅	103		141		66	
c	C ₂ H ₅ O	OCOC ₃ H ₇	90		141		66	
\boldsymbol{c}	C ₂ H ₅ O	$OCOC_4H_9$	79		125		50	
\boldsymbol{c}	C_2H_5O	$OCOC_5H_{11}$	70		126		51	
c	C ₂ H ₅ O	$OCOC_6H_{13}$	68		118		43	
\boldsymbol{a}	C ₂ H ₅ O	OCO ₂ CH ₃	103		145		70	
\boldsymbol{c}	C_2H_5O	$OCO_2C_2H_5$	96		140		65	
C	C ₂ H ₅ O	$COCH_3$	127		129		54	
\boldsymbol{c}	C ₂ H ₅ O	OC_2H_5		162	155			78
c	C_3H_7O	OC_3H_7		146	112			56
\boldsymbol{c}	C ₄ H ₉ O	OC_4H_9		135	124			62
$oldsymbol{c}$	$C_5H_{11}O$	OC_5H_{11}		113	108			54
c	C ₆ H ₁₃ O	OC_6H_{13}	102	0.0	114			57
\boldsymbol{a}	C_3H_7	C ₃ H ₇		82	32			16
c	C ₆ H ₅	C ₆ H ₅		256	255			128
a	$C_2H_5CO_2$	OCOC ₂ H ₅	010	174	140			$\begin{array}{c} 70 \\ 134 \end{array}$
c	C ₆ H ₅ CO ₂	OCOC, GH	216	100	268			134 72
a	CH ₃ OCO ₂	OCO ₂ CH ₃	00	166	144			62
c	C ₂ H ₅ OCO ₂	OCO ₂ C ₂ H ₅	98		123			
\boldsymbol{c}	C_6H_5OCO	$CO_2C_6H_5$	219		263			132

a. Unpublished results.

b. Kelker, H., Scheurle, B., Hatz, R and Bartsch, W., Angew. Chem. Int. Edn. 9, 962 (1970).

c. Kast, W. in "Landolt-Bornstein," 6th Ed., Vol II, Part 2a, Springer Verlag, Berlin 1960, pp. 266-335.

Table 2 Derivation of Substituent Parameters Based on Nematic-Isotropic Points of Benzylideneaniline Compounds

$$X$$
 CH=N Z

_						
Ref	X	Z	CN	CI	NI	NI - 55 + 9
a	CH ₃ O	C_3H_7	42		57	11
\boldsymbol{a}	CH_3O	$\mathrm{C}_{f 4}\mathbf{H}_{f 9}$	20		47	1
\boldsymbol{a}	CH_3O	C_5H_{11}	38		58	12
\boldsymbol{b}	CH_3O	C_6H_{13}	35		54	8
c	CH_3O	C_6H_5	162		177	131
\boldsymbol{c}	CH_3O	$\mathbf{C}\mathbf{N}$	103		114	68
c	CH_3O	OCH_3	146	146	99	53
\boldsymbol{c}	CH_3O	OC_2H_5	128	128	122	76
d	CH_3O	$OCOCH_3$	83		110	66
d	CH_3O	$OCOC_2H_5$	70		109	63
d	CH_3O	$OCOC_3H_7$	53		112	66
d	CH_3O	$OCOC_4H_9$	55		100	54
d	CH_3O	$OCOC_5H_{11}$	82		100	54
d	CH_3O	$OCOC_6H_{13}$	64		96	50
\boldsymbol{c}	CH_3O	$OCOC_6H_5$	119		178	132
e	CH_3O	OCO_2CH_3	85		109	63
e	CH ₃ O	$OCO_2C_2H_5$	81		104	58
e	CH_3O	$OCO_2C_3H_7$	78		87	41
e	CH_3O	$OCO_2C_4H_9$	66		84	3 8
e	CH_3O	$OCO_2C_5H_{11}$	45		82	3 6
\boldsymbol{e}	CH_3O	$OCO_2C_6H_{13}$	66		79	33
b	CH_3O	COC_2H_5	115		132	86
\boldsymbol{b}	CH_3O	COC_3H_7		101	96	50
\boldsymbol{b}	CH_3O	COC_4H_9	87		105	59
\boldsymbol{a}	$\mathrm{C_3H_7}$	OCH^3		59	58	12
\boldsymbol{a}	$\mathbf{C_4H_9}$	OCH_3	46		49	3
\boldsymbol{a}	C_5H_{11}	OCH ₃	48		64	18
c	$\mathbf{C_6H_5}$	OCH_3		186	176	130
c	$\mathbf{C}\mathbf{N}$	OCH_3	115		125	79
\boldsymbol{c}	C_2H_5O	OCH^3		123	121	7 5
f	C_4H_9O	OCH_3		111	106	60
c	$\mathrm{CH_3CO_2}$	OCH_3	112		123	77
\boldsymbol{g}	$\mathrm{C_2H_5CO_2}$	OCH_3	86		118	72
c	$C_5H_5CO_2$	OCH_3	119		176	130

Ref	X	$oldsymbol{Z}$	CINT	CI	NI	NI - 55 + 9
rei	A		CN	UI.	MT	N1 - 55 + 9
h	C_2H_5O	C_4H_9	36		79	13
c	C_2H_5O	C_6H_5	146		192	126
c	C_2H_5O	$\mathbf{C}\mathbf{N}$	105		124	58
c	C_2H_5O	OCH_3		123	12I	55
c	C_2H_5O	OC_2H_5		148	143	77
d	C_2H_5O	$OCOCH_3$	110		132	66
$j \ j$	C_2H_5O	$OCOC_2H_5$	111		134	68
j	C_2H_5O	$\mathrm{OCOC_3H_7}$	99		137	71
j	C_2H_5O	$OCOC_5H_{11}$	79		110	44
c	C_2H_5O	$OCOC_6H_5$	144		188	122
e	C_2H_5O	${ m OCO_2CH_3}$	86		133	67
e	C_2H_5O	$\mathrm{OCO_2C_2H_5}$	94		129	63
e	C_2H_5O	$\mathrm{OCO_2C_3H_7}$	86		116	50
e	$\mathrm{C_2H_5O}$	$OCO_2C_4H_9$	82		112	46
e	C_2H_5O	$\mathrm{OCO_2C_5H_{11}}$	75		105	39
e	C_2H_5O	$OCO_2C_6H_{13}$	71		103	37
f	C_2H_5O	COCH ₃		119	115	49
c	C_6H_5	OC_2H_5	164		191	125
c	$^{\mathrm{CN}}$	OC_2H_5	115		132	66
c	$\mathrm{CH_3O}$	OC_2H_5		128	122	56
c	C_3H_7O	OC_2H_5		125	124	58
c	C_4H_9O	OC_2H_5	106		130	64
c	$C_5H_{11}O$	OC_2H_5	102		119	53
c	$\mathrm{C_6H_{13}O}$	$\mathrm{OC_2H_5}$	98		122	56
c	$C_6H_5CO_2$	$\mathrm{OC_2H_5}$	143		187	121

- a. Rosenberg, H. and Champa, R. A., Mol. Cryst. and Liq. Cryst. 11, 191 (1970).
 - b. Unpublished results.
- c. Kast, W. in "Landolt-Bornstein," 6th Ed., Vol. II, Part 2a, Springer Verlag, Berlin 1960, pp. 266-335.
 - d. Castellano, J. A. et. al., private communication.
 - e. Castellano, J. A., Oh, C. S. and McCaffry, M. T., private communication.
- f. Castellano, J. A., Goldmacher, J. R., Barton, L. A. and Kane, J. S., J. Org. Chem. 33, 350 (1968).
 - g. Goldmacher, J. and Barton, L. A., J. Org. Chem. 32, 476 (1967).
 - h. Fishel, D. L., private communication.
 - i. Steinsträsser, R. and Pohl, L., Z. Naturforsch. 26b, 87 (1971).
- j. van der Veen, J. and Grobben, A. H., paper presented at III International Liquid Conference, Berlin, Aug. 1970.

Table 3 Derivation of Substituent Parameters Based on Nematic-Isotropic Points of Azoxy Compounds

$$X \longrightarrow N = N \longrightarrow Z$$

Ref	X	\boldsymbol{z}	CN C	I NI	NI-55	NI-75	-21
a	CH ₃ O	CH ₃	†	88	33		12
a	CH ₃ O	C_2H_5	Ť	70	15		-6
a	CH ₃ O	C_3H_7	Ť	94	39		18
\boldsymbol{b}	CH ₃ O	C_4H_9	41	74	19		-2
\boldsymbol{a}	CH_3O	$C_{5}\mathbf{H}_{11}$	†	90	35		14
\boldsymbol{a}	CH_3O	$C_{f 6}H_{13}$	†	78	23		2
c	CH_3O	OC_2H_5	96	154	99		78
\boldsymbol{a}	CH_3O	$OCOC_3H_7$	†	136	81		60
a	CH_3O	$OCO_2C_5H_{11}$	†	101	46		25
c	CH_3O	CO ₂ CH ₃	123	130	75		54
c	CH_3O	$CO_2C_2H_5$	90	92	37		16
c	CH ₃ O	$CO_2C_5H_5$	123	208	153		132
\boldsymbol{b}	C_4H_{\bullet}	OCH_3	42	77	${\bf 22}$		1
\boldsymbol{c}	CH_3CO_2	OCH_3	116	132	77		56
c	$C_6H_5CO_2$	OCH_3	148	196	141		120
c	C_2H_5O	CO_2CH_3	135	156		81	60
c	C_2H_5O	$CO_2C_2H_5$	102	115		40	19
c	C_2H_5O	$CO_2C_4H_9$	79	88		13	-8
\boldsymbol{c}	C_2H_5O	$CO_2C_6H_5$	168	211		136	115
\boldsymbol{c}	CH ₃ OCO	OC_2H_5	111	148		73	52
\boldsymbol{c}	C_2H_5OCO	OC_2H_5	76	112		37	16
\boldsymbol{c}	$C_3H_7CO_2$	OC_2H_5	81	151		76	55
\boldsymbol{c}	$C_6H_5CO_2$	OC_2H_5	145	206		131	110
c	$C_4H_9OCO_2$	OC_2H_5	80	128		53	32
c	CH_3CO_2	OC_2H_5	95	150		75	54
c	C_6H_5OCO	OC_2H_5	146	209		134	113

[†] mixture of isomers

a. Unpublished results.

b. Berwick, M. A., private communication.

c. Kast, W. in "Landolt-Bornstein," 6th Ed., Vol. II, Part 2a, Springer Verlag, Berlin 1960, pp. 266-335.

Table 4 Derivation of Substituent Parameters Based on Nematic-Isotropic Points of Nitrones

$$X \bigcirc CH = N \bigcirc Z$$

Ref	X	$oldsymbol{Z}$	CN	CI	NI	NI55	NI-75	-8
a	CH ₃ O	C ₄ H ₉		113	53	-2		-10
\boldsymbol{b}	CH_3O	OCH _a		149	120	65		57
\boldsymbol{b}	CH_3O	OC_2H_5		146	138	83	63	75 55
\boldsymbol{b}	CH_3O	OC_3H_7		155	109	54		46
\boldsymbol{b}	CH_aO	OC_4H_9	123		123	68		60
\boldsymbol{b}	CH_3O	OC_5H_{11}	112		120	65		57
\boldsymbol{b}	CH_3O	OC_6H_{13}	107		125	70		62
\boldsymbol{a}	C_4H_a	OCH,		108	70	15		7
\boldsymbol{c}	CH ₃ CO ₂	OCH,		154	134	79		71
\boldsymbol{b}	C_2H_5O	OCH,		129	128	73	53	65 45
\boldsymbol{b}	C_2H_5O	OC_2H_5		178	158		83	75

a. Unpublished results.

Young, W. R., Haller, I. and Aviram, A., IBMJ. Res. and Dev. 15, 41 (1971).

c. Young, W. R., Mol. Cryst. and Liq. Cryst. 10, 237 (1970).

Table 5 Derivation of Substituent Parameters Based on Nematic-Isotropic Points of Ester Compounds

$$X \left(\right)_{C-O}^{0} \left(\right)_{Z}$$

Ref	X	Z	CN	CI	NI	NI-55	NI-75	+35
\overline{a}	CH ₃ O	OC ₂ H ₅		96	94	39		74
a	CH_3O	$CO_2C_6H_{13}$		129	-8	-63		-28
\boldsymbol{a}	CH_3O	$CO_2C_6H_5$	152		156	101		136
\boldsymbol{b}	$C_2H_5OCO_2$	OCH ₃		110	82	27		62
\boldsymbol{b}	$C_3H_7OCO_2$	OCH_3		78	60	5		40
\boldsymbol{b}	$C_4H_9OCO_2$	OCH_3		70	57	2		37
\boldsymbol{b}	$C_5H_{11}OCO_2$	OCH ₃		54	53	-2		33
\boldsymbol{b}	$C_6H_{13}OCO_2$	OCH_3		57	56	1		36
\boldsymbol{b}	CH_3OCO_2	OC_2H_5	86		110		35	70
\boldsymbol{b}	$C_2H_5OCO_2$	OC_2H_5		104	96		21	56
\boldsymbol{b}	$C_3H_7OCO_2$	OC_2H_5		82	79		4	39
\boldsymbol{b}	$C_4H_7OCO_2$	OC_2H_5	49		90		15	50
\boldsymbol{b}	C ₅ H ₁₁ OCO ₂	OC_2H_5	59		74		-1	34
b	$C_6H_{13}OCO_2$	OC_2H_5	64		79		4	39

a. Kast, W. in "Landolt-Bornstein," 6th Ed., Vol. II, Part 2a, Springer Verlag, Berlin 1960, pp. 266-335.

b. Castellano, J. A., McCaffrey, T. and Goldmacher, J. E., Mol. Cryst. and Liq. Cryst. 12, 345 (1971).

Table 6 Substituent Parameters

$$X \left(\begin{array}{c} \\ \end{array} \right) Y \left(\begin{array}{c} \\ \end{array} \right) Z$$

				carb	on ato	ms		
X, Z	1	2	3	4	5	6		CN
R	-2	5	12	15	14	2	128	68
RO	55	75	56	61	55	58		
O RCO -	65	67	63	54	50	45	125	
$_{\rm ROCO}^{\parallel}$	68	61	42	41	43	35		
O RC - -	52	86	50	59	†	†		
ROC	55	17	†	-8	†	†	125	

† Values not determined

Y	Parameter
N=N	0
CH=N	- 9
O ↑ N — N	21
O ↑ CH —N	8
O # CO	- 3 5

Table 7 Estimated Nematic-Isotropic Points for p,p-Disubstituted Benzylideneanilines

$$X$$
CH $=$ N Z

Ref	X	Z	CN	CI	NI (exptl)	NI (calcd)	Δ
а	CH ₃	OCOC,H,		136	118	114	-4
\boldsymbol{a}	C_6H_5	$\mathrm{CO_2C_2H_5}$	93		94	136	42
b	C_3H_7O	C_4H_9	39		56	62	6
\boldsymbol{a}	C_3H_7O	C_6H_5	154		170	175	5
c	C_3H_7O	OCOCH,	94		104	112	8
d	C_3H_7O	OCOC ₂ H ₅	97		111	114	3
d	C_3H_7O	$OCOC_5H_{11}$	85		108	97	- 11
d	C_3H_7O	$OCOC_6H_{13}$	67		116	92	-24
e	C_3H_7O	OCO2CH3	98		107	115	8
e	C ₃ H ₇ O	$OCO_2C_2H_5$	104		106	108	2
e	C_3H_7O	$OCO_2C_3H_7$	84		95	89	-6
e	C_3H_7O	$OCO_2C_4H_9$	69		93	88	-5
e	C_3H_7O	$OCO_2C_5H_{11}$	58		108	90	-18
e	C_3H_7O	$OCO_2C_6H_{13}$	53		88	82	-6
f	C_3H_7O	COCH ₃	92		102	99	- 3
b	C_4H_9O	C_4H_9	36		74	67	-7
\boldsymbol{a}	$C_4H_{\bullet}O$	C_6H_5	148		176	180	4
a	C_4H_9O	OC_4H_9		125	121	113	-8
g	C_4H_9O	OC_6H_{13}	105		119	110	9
d	C_4H_9O	OCOCH ₃	82		113	117	4
d	C_4H_9O	OCOC ₂ H ₅	85		119	119	0
d	C_4H_9O	$OCOC_3H_7$	87		120	115	- 5
d	C_4H_9O	OCOC ₄ H ₉	75		112	106	-6
d	C_4H_9O	$OCOC_8H_{11}$	80		114	102	- 12
d	C_4H_9O	$OCOC_6H_{13}$	71		98	97	– 1
e	C_4H_9O	OCO ₂ CH ₃	67		116	120	4
e	C_4H_9O	$OCO_2C_2H_5$	90		114	113	-1
e	C_4H_9O	$OCO_2C_3H_7$	78		106	94	-12
e	C_4H_9O	$OCO_2C_4H_9$	68		103	93	- 10
e	C_4H_9O	$OCO_2C_5H_{11}$	65		99	95	-4
e	C_4H_9O	$OCO_2C_6H_{13}$	56		97	87	- 10
h	C_4H_9O	COCH ₃	85		109	104	- 5
i	C_4H_9O	COC_2H_5	86		144	138	- 6
b	$C_5H_{11}O$	$\mathbf{C_4H_9}$	24		68	61	-7
\boldsymbol{a}	$C_5H_{11}O$	C_6H_5	137		167	174	7
\boldsymbol{a}	$C_{\bf 5}H_{11}O$	OC_5H_{11}		113	103	101	-2
d	$C_5H_{11}O$	OCOCH3	88		105	111	6
d	$C_8H_{11}O$	$OCOC_2H_5$	82		109	113	4
d	$C_5H_{11}O$	$OCOC_4H_9$	83		105	100	- 5
d	$C_{\bf 5}H_{11}O$	$OCOC_5H_{11}$	82		111	96	- 15
d	$C_8H_{11}O$	$OCOC_6H_{13}$	89		104	101	- 3
e	$C_5H_{11}O$	OCO_2CH_3	91		106	114	8
e	$C_5H_{11}O$	$OCO_2C_2H_5$	82		104	107	3
e	$C_5H_{11}O$	$OCO_2C_3H_7$	66		96	88	-8

Ref	X	Z	CN	CI	NI (exptl)	NI (calcd)	Δ
e	$C_5H_{11}O$	OCO ₂ C ₄ H ₉	71		95	87	-8
e	$C_5H_{11}O$	$OCO_2C_5H_{11}$	66		93	89	-4
e	$C_{\bf 5}H_{\bf 11}O$	$OCO_2C_6H_{13}$	60		91	81	- 10
f	$C_5H_{11}O$	COCH ₃	80		106	98	-8
$f \ j$	C ₅ H ₁₁ O	COC_2H_5	83		146	132	- 14
b	$C_6H_{13}O$	C_4H_9	34		78	64	- 14
a	$C_6H_{13}O$	C_6H_5	132		168	177	9
e	$C_6H_{13}O$	OCO ₂ CH ₃	62		109	117	8
e	$C_6H_{13}O$	$OCO_2C_2H_5$	64		108	110	2
e	$C_6H_{13}O$	$OCO_2C_3H_7$	64		100	91	- 9
e	$C_6H_{13}O$	$OCO_2C_4H_9$	69		99	90	- 9
e	$C_6H_{13}O$	$OCO_2C_5H_{11}$	63		96	92	-4
e	$C_6H_{13}O$	$OCO_2C_6H_{13}$	58		96	84	- 12
i	$C_6H_{13}O$	$COCH_3$	74		111	101	- 10
\boldsymbol{c}	$C_6H_{13}O$	OCOCH ₃	88		109	114	5
k	$C_2H_5CO_2$	CH ₃		102	66	56	- 10
\boldsymbol{b}	$C_2H_5CO_2$	C_2H_5		80	58	63	5
\boldsymbol{b}	$C_3H_7CO_2$	C_2H_5		78	64	59	-5
\boldsymbol{b}	$C_4H_9CO_2$	C_2H_5		74	56	50	-6
\boldsymbol{b}	$\mathrm{C_5H_{11}CO_2}$	C_2H_5		68	66	46	- 20
b	$\mathrm{C_{5}H_{13}CO_{2}}$	$\mathbf{C_2H_5}$		76	64	41	-25
\boldsymbol{b}	$\mathrm{CH_3CO_2}$	C_4H_9		60	56	71	15
\boldsymbol{b}	$C_2H_5CO_2$	C_4H_9	64		70	73	3
\boldsymbol{b}	$C_3H_7CO_2$	C_4H_9	68		74	69	- 5
\boldsymbol{b}	$C_4H_9CO_2$	C_4H_9		86	68	60	-8
. b	$C_5H_{11}CO_2$	$\mathrm{C_4H}_{9}$		96	76	56	- 20
b	$\mathrm{C_6H_{13}CO_2}$	C_4H_9		76	74	51	- 23
\boldsymbol{b}	$\mathrm{CH_3CO_2}$	$COCH_3$		114	105	108	3
\boldsymbol{b}	$\mathrm{C_3H_5CO_2}$	$COCH_3$	106		113	110	- 3
\boldsymbol{b}	$\mathrm{C_3H_7CO_2}$	COCH ₃	88		116	106	- 10
\boldsymbol{b}	$\mathrm{C_4H_9CO_2}$	$COCH_3$	101		105	97	-8
\boldsymbol{b}	$C_5H_{11}CO_2$	COCH ₃	92		110	93	-7
\boldsymbol{b}	$C_6H_{13}CO_2$	$COCH_3$	100		106	88	- 18
a	C ₆ H ₅ CO ₂	CH ₃		136	124	114	- 10

a. Kast, W. in "Landolt-Bornstein," 6th Ed., Vol. II, Part 2a, Springer Verlag, Berlin 1960, pp. 266-335.

b. Fishel, D. L., private communication.

c. Castellano, J. A. et. al., private communication.

d. Steinsträsser, R. and Pohl, L., Z. Naturforsch. 26b, 87 (1971).

e. Castellano, J. A., Oh, C. S. and McCaffrey, M. T., private communication.

f. Haller, I. and Cox, R. J. in "Liquid Crystals and Ordered Fluids," ed. Johnson, J. F. and Porter, R. S., Plenum Press, New York, 1970, p. 393.

g. van der Veen, J. and Grobben, A. H., paper presented at III International Liquid Crystal Conference, Berlin, August 1970.

i. Castellano, J. A. and McCaffrey, M. T. in "Liquid Crystals and Ordered Fluids," ed. Johnson, J. F. and Porter, R. S., Plenum Press, New York, 1970, p. 293.

j. Arora, S. L., Taylor, T. R. and Fergason, J. L., in "Liquid Crystals and Ordered Fluids," ed. Johnson, J. F. and Porter, R. S., Plenum Press, New York, 1970, p. 321.

k. Dave, J. S. and Lohar, J. M., J. Chem. Soc. (A) 1473 (1967).

Table 8 Estimated Nematic-Isotropic Points for p, p'-Disubstituted Azo Benzenes

$$X \left(\begin{array}{c} \\ \\ \end{array} \right) N = N \left(\begin{array}{c} \\ \\ \end{array} \right) Z$$

Ref	X	Z	CN	CI	NI (exptl)	NI (caled)	Δ
\overline{a}	C_3H_7	OCO ₂ CH ₃	69		77	80	3
\boldsymbol{a}	C_3H_7	$OCO_2C_2H_5$		82	78	73	- 5
\boldsymbol{b}	C_4H_9	OC_4H_9	65		75	76	1
\boldsymbol{b}	C_4H_9	OC_5H_{11}	42		66	70	4
a	C_6H_{13}	$OCO_2C_4H_9$	4.2		52	43	- 9
c	CH_3CO_2	$OCO_2C_2H_5$	119		126	126	0
c	CH_3CO_2	$CO_2C_2H_5$	99		102	82	-20
\boldsymbol{a}	$\mathrm{C_2H_5CO_2}$	OCO_2CH_3		154	137	135	- 2

a. Unpublished results.

b. Fishel, D. L., private communication.

c. Kast, W. in "Landolt-Bornstein," 6th Ed., Vol. II, Part 2a, Springer Verlag, Berlin 1960, pp. 266-335.

Table 9 Estimated Nematic-Isotropic Points for p, p'-Disubstituted Azoxy Benzenes

$$X \left(\begin{array}{c} O \\ \uparrow \\ N = N \end{array} \right) Z$$

Ref	X	Z	CN	CI	NI (Exptl)	NI (calcd)	Δ
a	C_3H_7	$OCO_2C_5H_{11}$	t		79	76	- 3
\boldsymbol{a}	C ₄ H ₉	OCO ₂ C ₄ H,	Ť		70	77	7
\boldsymbol{a}	C_4H_9	$\mathrm{OCO_2C_5H_{11}}$	Ť		68	79	11
a	C_5H_{11}	OCO ₂ CH ₃	Ť		100	103	3
\boldsymbol{a}	C_5H_{11}	$OCO_2C_2H_5$	†		92	96	4
\boldsymbol{a}	C_5H_{11}	$OCO_2C_3H_7$	†		81	77	-4
\boldsymbol{a}	$C_{5}H_{11}$	$OCO_2C_4H_9$	†		80	76	- 4
a	C_5H_{11}	$OCO_2C_5H_{11}$	†		82	78	- 4
\boldsymbol{a}	C_5H_{11}	$\mathrm{OCO_2C_6H_{13}}$	†		81	70	-11
a	C_6H_{13}	OCO_2CH_3	†		89	91	2
a	C ₆ H ₁₃	$OCO_2C_2H_5$	†		82	84	2
\boldsymbol{a}	C_6H_{13}	$OCO_2C_3H_7$	†		70	65	- 5
a	C_6H_{13}	$OCO_2C_4H_9$	†		72	64	- 8
a	C_6H_{13}	$\mathrm{OCO_2C_5H_{11}}$	Ť		72	66	- 6
a	C_6H_{13}	$OCO_2C_6H_{13}$	†		73	58	- 15
\boldsymbol{b}	C_6H_5	C_6H_5	211		206	277	71
\boldsymbol{b}	$\mathbf{C}\mathbf{N}$	$^{\mathrm{CN}}$	215		221	157	- 64
b	C_3H_7O	OC_3H_7	116		122	133	11
\boldsymbol{b}	C_4H_9O	OC_4H_9	107		134	143	9
\boldsymbol{b}	$C_5H_{11}O$	OC_5H_{11}	82		119	131	12
b	$C_6H_{13}O$	OC_6H_{13}	81		127	137	10
\boldsymbol{b}	$\mathrm{CH_3CO_2}$	OCOCH ₃	163		166	151	- 15
b	$C_6H_5CO_2$	$OCOC_6H_5$	192		> 280	271	- 9
b	$C_2H_5OCO_2$	$OCO_2C_2H_5$	101		138	143	5
<i>b</i>	C_6H_5OCO	$\mathrm{CO_2C_6H_5}$	202		280	271	-9

[†] mixture of isomers

Table 10 Difference Between Experimental and Estimated Nematic-Isotropic Points

	≤5°	≤10°	≤15°	>15°	Total
N=N	6 (75%)	7 (87.5%)	7 (87.5%)	1	8
CH=N O	30 (38%)	62 (79%)	70 (90%)	8	78
$\stackrel{\uparrow}{\mathbb{N}}=\mathbb{N}$	10 (40%)	17 (68%)	23 (92%)	2	25
Total	46 (41%)	86 (77.5%)	10 (90%)	11	111

a. Unpublished results.

b. Kast, W. in "Landolt-Bornstein," 6th Ed., Vol. II, Part 2a, Springer Verlag, Berlin 1960, pp. 266-335.

extrapolated nematic-isotropic point of 110° for 4,4'methoxyazabenzene, (6) the methoxy functionality was assigned a value of 55° . The ethoxy substituent was arbitrarily taken as 75° , a value close to that obtained from the reported nematic-isotropic point of 4,4'-diethoxyazobenzene. By subtracting these values from the reported nematic-isotropic points of unsymmetrically substituted p,p-disubstituted azobenzenes containing a methoxy or ethoxy substituent, 30 values were determined for 20 substituents. Additional substituent values were obtained from symmetrically substituted p,p-disubstituted azobenzenes. All of these values are shown in Table 1. Crystal-isotropic points (CI) are given for monotropic compounds.

We disregarded the orientation of the central linkage in a series of unsymmetrically substituted p,p' disubstituted Schiff's Bases containing methoxy and ethoxy substituents. The values obtained by subtracting 55° or 75° from the nematic-isotropic points of methoxy or ethoxy substituted compounds respectively were, on the average, nine degrees lower than the corresponding values obtained for the azo compounds. A parameter value of -9° was thus assigned to the azomethine linkage (Table 2). In like manner, values of $+21^{\circ}$, -8° and -35° were assigned to the azoxy, nitrone and ester linkages (Tables 3, 4 and 5).

A total of 137 values were determined for thirty-four substituents. The values were then averaged for each substituent, some substituents having only one value and three substituents as many as eight values. The averaged values are given in Table 6, except that values for three substituents, namely C-2, C-4 alkyl and C-5 carbonate were redetermined to provide better agreement with compounds described under Results.

3. Results

The predictive value of the substituent constants (Table 6) was tested for a series of 78 mesomorphic anils, 8 azo compounds and 25 azoxy compounds. These compounds contained neither methoxy nor ethoxy substituents. A comparison of reported and estimated nematic-isotropic points as well as deviations from the reported values are shown in Tables 7, 8 and 9. The average of the absolute deviation values for 111 compounds is 9°. Some statistical data for

these deviations are summarized in Table 10, which shows that 90% of the values were predicted within 15° and 77% within 10° of reported values.

Inspection of compounds whose estimated nematic-isotropic points exhibit deviations of more than 10° from the experimental values reveals that about one-third of these compounds contain an alkyl substituent. Diphenyl and dicyano azoxybenzene show the largest deviations.

4. Conclusion

A simple method has been described for estimating the nematic to isotropic transition temperatures for p,p'-disubstituted diphenyl compounds containing any combination of 35 substituents and 5 central linkages. With additional experimental data this method can be expanded to cover additional substituents and central linkages.

REFERENCES

- Rosenberg, H. M., Knaak, L. E. and Serve, P. M., presented in part at the 162nd National Meeting of the American Chemical Society, Washington, DC, September 1971.
- (a) Williams, R., Nature 199, 273 (1963);
 (b) Heilmeier, G. H., Zanoni, L. A. and Barton, L. A., App. Phys. Letters 13, 46 (1968), Proc. IEEE 56, 1162 (1968).
- 3. Weygand, C. and Gabler, R., Chem. Ber. 71B, 2399 (1938).
- Young, W. R., Haller, I. and Aviram, A., IBM J. Res. and Dev. 15, 41 (1971).
- Gray, G. W., "Molecular Structure and the Properties of Liquid Crystals," Academic Press, New York, 292 (1962).
- Kast, W. in "Landolt-Bornstein," 6th Ed., Vol II, Part 2a, Springer Verlag, Berlin 1960, p. 317.